Средна геометрична стойност: дефиниция, формула и приложения

Научете какво е средната геометрична стойност, формулата и практичните ѝ приложения във финанси и статистика — ясно, с примери и полезни съвети.

Автор: Leandro Alegsa

Средната геометрична стойност е число, което представя централна тенденция за набор от положителни числа при мултипликативни процеси. Изчислява се като n-тият корен от произведението на тези числа. Ако имаме N {\displaystyle N} числа {\displaystyle X_{1},X_{2},X,3\dots X_{N}}, средната геометрична стойност се дава с формулата:

{\displaystyle {\sqrt[{N}]{X_{1}\cdot X_{2}\cdot X_{3}\cdot \dots X_{N}}}}

Алтернативна формаула (чрез логаритми)

Често се използва еквивалентната формула с естествени логаритми, защото намалява риска от числено препълване и улеснява изчисленията:

GM = exp((1/N) · Σ ln x_i). Това означава, че първо се вземат ln на всяко число, изчислява се тяхната средна аритметична стойност, след което се взема експонентата.

Пример

Нека числата са 1.1, 1.2 и 0.9. Произведението е 1.1·1.2·0.9 = 1.188. Кубичният корен (3-тият корен) от 1.188 е приблизително 1.0585. Същият резултат се получава чрез логаритми: (ln1.1 + ln1.2 + ln0.9)/3 ≈ 0.05699, exp(0.05699) ≈ 1.0585.

Кога и защо се използва

  • Показва среден темп на растеж — например при годишни нива на възвръщаемост (CAGR) или при популационен растеж.
  • Подходяща за относителни или проценти — когато данните са в мултипликативна връзка помежду си (нарастване/намаляване), geometric mean дава по-представителна „средна“ стойност от аритметичната.
  • По-робустна към екстремуми — влиянието на много големи стойности е по-слабо отколкото при средното аритметично.
  • Използва се във финансите (за средна възвръщаемост), в статистиката (особено при логнормални разпределения), при изчисляване на индексни числа и в биологията за среден растеж.

Свойства и важни отношения

  • AM–GM неравенство: средната геометрична е винаги по-малка или равна на средната аритметична (GM ≤ AM), като равенството настъпва само когато всички стойности са равни.
  • Монотонност: ако увеличите една от стойностите (без да променяте останалите), GM не намалява.
  • Продукт: GM на групи числа може да се комбинира чрез свойства на логаритмите — полезно при работа с големи множества данни.

Технически изисквания и ограничения

  • Положителни числа: Най-често геометричната средна се дефинира за положителни числа. Ако всички стойности са положителни, формулата е добре дефинирана и може да се използва логаритмичният подход.
  • Нули: Ако поне едно от числата е нула, произведението е нула и геометричната средна (според директната дефиниция) е нула. Но при практическо изчисление чрез логове това води до ln(0), което е неопределено — поради това при данни с нули често се използват корекции (например замяна на 0 с малка положителна стойност) или се отбелязва, че GM = 0, но лог-методът не е приложим.
  • Отрицателни стойности: Обикновено не се работи с отрицателни числа, защото корените могат да бъдат нереални при четен n; при нечетен n е възможно да се вземе реален корен на отрицателно произведение, но това не е стандартна практика и може да доведе до неинтуитивни резултати.
  • Комплексни числа: Не се използва за комплексни числа, тъй като корен на комплексно число има повече от един резултат и дефиницията става нееднозначна.

Разширения и вариации

  • Теглова геометрична средна: Ако данните имат тежести w_i (сумата на тежестите = 1), тогава

GM_weighted = exp(Σ w_i ln x_i). Това е полезно, когато някои наблюдения имат по-голямо значение от други.

  • Геометрично стандартно отклонение: Използва се за измерване на разсейването при логнормални данни; дефинира се чрез експонентата на стандартното отклонение на ln(x).

Къде не трябва да се използва

  • Не е подходяща за данни, които трябва да се сумират (например тегло, общ брой), където средното аритметично е по-информативно.
  • Не се използва, когато има отрицателни и нулеви стойности без подходяща предварителна обработка.

Кратко резюме

  • Средната геометрична е полезна при мултипликативни процеси и проценти на промяна; дава средна скорост на растеж и е по-устойчива на изкривяване от някои големи стойности в сравнение със средната аритметична.
  • За изчисления често се използва формулата с логаритми: GM = exp((1/N)·Σ ln x_i).
  • Изисква положителни стойности; при нули и отрицателни стойности трябва да се внимава или да се приложи специална обработка.

Въпроси и отговори

Въпрос: Какво представлява средната геометрична стойност?


О: Средната геометрична стойност е число, което се използва за представяне на набор от числа. То се изчислява, като се вземе n-тият корен от произведението на тези числа.

В: Как се изчислява средната геометрична стойност?


О: За да изчислите средната геометрична стойност, вземете n-тия корен от произведението на всички дадени числа в множеството.

Въпрос: Какво обикновено се има предвид, когато се говори за "средна стойност" или "средна стойност"?


О: Когато се говори за "средно" или "средно", обикновено се има предвид средното аритметично.

Въпрос: Винаги ли средната геометрична стойност е по-малка от средната аритметична стойност?


О: Да, най-общо казано, средната геометрична стойност почти винаги е по-малка от съответната средна аритметична стойност. В някои случаи тя може да е равна.

Въпрос: Можете ли да изчислите средна геометрична стойност, ако едно от числата в нея е нула?


О: Не, тъй като при изчисляването му е включено произведение, няма смисъл да се изчислява средно геометрично, ако едно от числата му е нула.

Въпрос: Има ли смисъл да се изчислява средна геометрична стойност, когато едно от числата в нея е отрицателно?


О: Най-общо казано, не - няма особен смисъл да се изчислява геометрична средна стойност, когато едно от числата ѝ е отрицателно.

Въпрос: Възможно ли е този метод да се използва за комплексни числа?


О; Не - пресмятането на корени с комплексни числа има повече от един резултат, така че този метод не може да се използва за тях.


обискирам
AlegsaOnline.com - 2020 / 2025 - License CC3